Abstract
The rapid development of new energy fields such as electric vehicles and smart grids has put forward higher requirements for the power management of battery integrated systems. Considering that internal temperature and parameter consistency are important factors affecting battery safety and state estimation accuracy, a lumped thermoelectric coupling model based on the multi-time scale effects of battery dynamics parameter is established in this paper. On this basis, a new multi-feature separation modeling idea is proposed and adopted to complete the development of the strong coupling adaptive asynchronous identification strategy to realize the solution of the model. Specifically, the high-frequency and low-frequency characteristics of the resistor–capacitor link under different time constants are distinguished on different time scales. Three sub-filters based on forgetting factor recursive least squares, extended Kalman filtering and joint Kalman filtering are used to realize the adaptive asynchronous synergistic estimation of battery high-frequency dynamics parameter, low-frequency dynamics parameter and internal temperature. In addition, the filters at different time scales are strongly coupled through the voltage response on the diffusion impedance, and the time scale drive under slow dynamics depends on the current distribution of the test conditions. The experimental results of two long-term cycles show that the proposed strategy exhibits excellent terminal voltage tracking effect and internal temperature estimation accuracy. Finally, the concept of parameter dispersion is proposed and discussed. Compared with the results under the traditional identification method, the proposed strategy reduces the maximum parameter dispersion by 51.9%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.