Abstract

The investigation of multi-body dynamics (MBD) modeling for landing gear drop tests is a hot topic in the realm of landing gear design. The current results were primarily focused on the multi-rigid body simulation or a simple multi-flexible body simulation, with little regard for the correctness of longitudinal loads and their experimental confirmation, particularly wheel–axle loads. Based on a genuine oleo-pneumatic landing gear drop test of a large civil aircraft, enhanced multi-body dynamics simulation research is carried out, considering the structural flexibility and bearing support by adopting flexible multi-bodies modeling and rigid-flex coupling contacts. When compared to the test data, which purposefully measured the longitudinal wheel–axle loads, the simulation results show that the loads, shock absorber compression, and shock absorber inner pressures are all within good agreement. Furthermore, the influence of structural stiffness and bearing contact was investigated by adjusting the model settings to confirm their importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.