Abstract

To characterize and minimize the magnetization transfer (MT) effect in MR fingerprinting (MRF) relaxation measurements with a 2-pool (2P) MT model of multiple tissue types. Semisolid MT effect in MRF was modeled using 2P Bloch-McConnell equations. The combinations of MT parameters of multiple tissues (white [WM] and gray matter [GM]) were used to build the MRF dictionary. Both 1-pool (1P) and 2P models were simulated to characterize the dependence on MT. Relaxations measured using MRF with spin-echo saturation-recovery (SR) or inversion-recovery preparations were compared with conventional SR-prepared T1 and multiple spin-echo T2 measurements. The simulations results were validated with phantoms and brain tissue samples. The MRF signal was different from the 1P and 2P models. 1P MRF produced significantly (P < .05) underestimated T1 in WM (20-30%) and GM (7-10%), while 2P MRF measured consistent T1 and T2 in both WM and GM with conventional measurements (pairwise test P > .1; correlated P < .05). Simulations showed that SR-prepared MRF measuring T1 had much less errors against the variation of the macromolecular fraction. Compared with inversion-recovery preparation, SR-prepared MRF produced higher relaxation correlations (R > 0.9) with conventional measurements in both WM and GM across samples, suggesting that SR-prepared MRF was less sensitive to the compositive effect of multiple MT parameters variations. 2P MRF using a combination of MT parameters for multiple tissue types can measure consistent relaxations with conventional methods. With the 2P models, SR-prepared MRF would provide an option for robust relaxation measurement under heterogeneous MT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call