Abstract
This paper is concerned with the design of stabilizing model predictive control (MPC) laws for constrained linear systems. This is achieved by obtaining a suitable terminal cost and terminal constraint using a saturating control law as local controller. The system controlled by the saturating control law is modelled by a linear difference inclusion. Based on this, it is shown how to determine a Lyapunov function and a polyhedral invariant set which can be used as terminal cost and constraint. The obtained invariant set is potentially larger than the maximal invariant set for the unsaturated linear controller, O ∞ . Furthermore, considering these elements, a simple dual MPC strategy is proposed. This dual-mode controller guarantees the enlargement of the domain of attraction or, equivalently, the reduction of the prediction horizon for a given initial state. If the local control law is the saturating linear quadratic regulator (LQR) controller, then the proposed dual-mode MPC controller retains the local infinite-horizon optimality. Finally, an illustrative example is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.