Abstract
Head motion during functional Magnetic Resonance Imaging acquisition can significantly contaminate the neural signal and introduce spurious, distance-dependent changes in signal correlations. This can heavily confound studies of development, aging, and disease. Previous approaches to suppress head motion artifacts have involved sequential regression of nuisance covariates, but this has been shown to reintroduce artifacts. We propose a new motion correction pipeline using an omnibus regression model that avoids this problem by simultaneously regressing out multiple artifacts using the best performing algorithms to estimate each artifact. We quantitatively evaluate its motion artifact suppression performance against sequential regression pipelines using a large heterogeneous dataset (n=151) which includes high-motion subjects and multiple disease phenotypes. The proposed concatenated regression pipeline significantly reduces the association between head motion and functional connectivity while significantly outperforming the traditional sequential regression pipelines in eliminating distance-dependent head motion artifacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. IEEE International Symposium on Biomedical Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.