Abstract

A lead salt diode infrared laser spectrometer has been employed to investigate the rotational predissociation in Ar-HBr for transitions up to J' = 79 in the v(1) HBr stretching vibration of the complex using a slit jet and static gas phase. Line-shape analysis and modeling of the predissociation lifetimes have been used to determine a ground-state dissociation energy D(0) of 130(1) cm(-1). In addition, potential energy surfaces based on ab initio calculations are scaled, shifted, and dilated to generate three-dimensional morphed potentials for Ar-HBr that reproduce the measured value of D(0) and that have predictive capabilities for spectroscopic data with nearly experimental uncertainty. Such calculations also provide a basis for making a comprehensive comparison of the different morphed potentials generated using the methodologies applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.