Abstract

Current models of vegetation dynamics using the normalized vegetation index (NDVI) time series perform poorly for high-latitude environments. This is due partly to specific attributes of these environments, such as short growing season, long periods of darkness in winter, persistence of snow cover, and dominance of evergreen species, but also to the design of the models. We present a new method for monitoring vegetation activity at high latitudes, using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI. It estimates the NDVI of the vegetation during winter and applies a double logistic function, which is uniquely defined by six parameters that describe the yearly NDVI time series. Using NDVI data from 2000 to 2004, we illustrate the performance of this method for an area in northern Scandinavia (35 × 162 km 2, 68° N 23° E) and compare it to existing methods based on Fourier series and asymmetric Gaussian functions. The double logistic functions describe the NDVI data better than both the Fourier series and the asymmetric Gaussian functions, as quantified by the root mean square errors. Compared with the method based on Fourier series, the new method does not overestimate the duration of the growing season. In addition, it handles outliers effectively and estimates parameters that are related to phenological events, such as the timing of spring and autumn. This makes the method most suitable for both estimating biophysical parameters and monitoring vegetation phenology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.