Abstract

We consider an inventory routing problem in which a single vehicle is responsible for the transport of a commodity from a set of supply locations to a set of demand locations. At each location the inventory must be kept within predefined bounds, and the location specific supply and demand rates are constant throughout the time horizon. Each location can be visited several times during the time horizon, and the vehicle can visit the locations in any order as long as the capacity of the vehicle is not exceeded. Two models are presented, each defined on a different extended network. In a location-event model, the nodes are indexed by the location and the number of visits made so far to that location, while in a vehicle-event model the nodes are indexed by the location and the number of visits so far on the vehicle route. Both models are based on continuous time formulations. They are tightened with valid inequalities, and a new branching algorithm is designed to speed up the solution time of the models. Computational tests based on a set of maritime transportation instances are reported to compare both models and the corresponding tightened variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.