Abstract

For the neutral point clamped (NPC) three-level converter fed permanent magnet synchronous motor (PMSM) system, the performance of the conventional model predictive current control (MPCC) algorithm will be deteriorated if the amplitude of the neutral point potential (NPP) is large. Additionally, the adjustment process of the weighted coefficients of the conventional MPCC algorithm is complex because of numerous control terms in the cost function. To solve the above issues, an improved MPCC algorithm is proposed in this paper. Firstly, Newtonian iteration is used to transfer the stator current into stator voltage in the cost function. Then, the NPP term in the conventional cost function can be eliminated by introducing the partition control of the NP potential, which also eliminates the whole adjustment process of weighting coefficients. Finally, based on the amplitude of the NPP, the amplitude and phase angle of medium and small vectors are modified to improve the control performance of the torque and flux. Experimental results show that the fluctuation of the neutral point potential can be suppressed rapidly. Meanwhile, the performance of the torque, flux and current are also improved compared with the conventional MPCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.