Abstract

A pneumatic gravity compensation system is typically nonlinear in behavior. It is difficult to establish an accurate mathematical model for it, and it is particularly difficult to realize high-precision pressure control. A pneumatic gravity compensation system driven by a frictionless cylinder is built. Considering that the traditional model-free adaptive control is slow for pseudo-gradient identification, an improved model-free adaptive control is proposed to predict the changes in the pseudo gradient and accelerate the process of pseudo gradient identification. The static and dynamic gravity compensation of the pneumatic gravity compensation system is realized. Finally, the experimental results show that the steady-error of step response of the improved model-free adaptive controller is less than 200 Pa, and the rise time is approximately 13 seconds. The sinusoidal tracking error (0.04 Hz) is approximately 1.94 KPa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.