Abstract
To enable the timely adjustment of the control strategy of automobile active safety systems, enhance their capacity to adapt to complex working conditions, and improve driving safety, this paper introduces a new method for predicting road surface state information and recognizing road adhesion coefficients using an enhanced version of the MobileNet V3 model. On one hand, the Squeeze-and-Excitation (SE) is replaced by the Convolutional Block Attention Module (CBAM). It can enhance the extraction of features effectively by considering both spatial and channel dimensions. On the other hand, the cross-entropy loss function is replaced by the Bias Loss function. It can reduce the random prediction problem occurring in the optimization process to improve identification accuracy. Finally, the proposed method is evaluated in an experiment with a four-wheel-drive ROS robot platform. Results indicate that a classification precision of 95.53% is achieved, which is higher than existing road adhesion coefficient identification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.