Abstract
Mass-specific metabolic rate negatively co-varies with body mass from the whole-animal to the mitochondrial levels. Mitochondria are the mainly consumers of oxygen inspired by mammals to generate ATP or compensate energetic losses dissipated as the form of heat (proton leak) during oxidative phosphorylation. Consequently, ATP synthesis and proton leak thus compete for the same electrochemical gradient. Because proton leak co-varies negatively with body mass, it is unknown if extremely small mammals further decouple their mitochondria to maintain their body temperature or if they implement metabolic innovations to ensure cellular homeostasis. The present study investigates the impact of body mass variation on cellular and mitochondrial functioning in small mammals, comparing the two extremely small African pygmy mice (Mus mattheyi, approx. 5 g and Mus minutoides, approx. 7 g) with the larger house mouse (Mus musculus, approx. 22 g). Oxygen consumption rates were measured from the animal to the mitochondrial levels. We also measured mitochondrial ATP synthesis in order to appreciate the mitochondrial efficiency (ATP/O). At the whole-animal scale, mass- and surface-specific metabolic rates co-varied negatively with body mass, whereas this was not necessarily the case at cellular and mitochondrial levels. M. mattheyi had generally the lowest cellular and mitochondrial fluxes, depending on the tissue considered (liver or skeletal muscle), as well as having higher efficient muscle mitochondria than the other two species. M. mattheyi presents metabolic innovations to ensure its homeostasis, by generating more ATP per oxygen consumed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.