Abstract
Since Edwards curves were introduced to elliptic curve cryptography by Bernstein and Lange in 2007, they have received a lot of attention due to their very fast group law operation. Pairing computation on such curves is slightly slower than on Weierstrass curves. However, in some pairing-based cryptosystems, they might require a number of scalar multiplications which is time-consuming operation and this can be advantageous to use Edwards in this scenario. In this paper, we present a variant of Miller’s algorithm for pairing computation on Edwards curves. Our approach is generic, it is able to compute both Weil and Tate pairings on pairing-friendly Edwards curves of any embedding degree. Our analysis shows that the new algorithm is faster than the previous algorithms for odd embedding degree and as fast as for even embedding degree. Hence, the new algorithm is suitable for computing optimal pairings and in situations where the denominators elimination technique is not possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.