Abstract

Microwave plasma assisted synthesis of diamond is experimentally investigated using high purity, 2–5% CH 4/H 2 input gas chemistries and operating at high pressures of 180–240 Torr. A microwave cavity plasma reactor (MCPR) was specifically modified to be experimentally adjustable and to enable operation with high input microwave plasma absorbed power densities within the high-pressure regime. The modified reactor produced intense microwave discharges with variable absorbed power densities of 150–475 W/cm 3 and allowed the control of the discharge position, size, and shape thereby enabling process optimization. Uniform polycrystalline diamond films were synthesized on 2.54 cm diameter silicon substrates at substrate temperatures of 950–1150 °C. Thick, freestanding diamond films were synthesized and optical measurements indicated that high, optical-quality diamond films were produced. The deposition rates varied between 3 and 21 μm/h and increased as the operating pressure and the methane concentrations increased and were two to three times higher than deposition rates achieved with the MCPR operating with equivalent input methane concentrations and at lower pressures (≤ 140 Torr) and power densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.