Abstract

BackgroundMineral oil aromatic hydrocarbon (MOAH) analysis in foods is a major analytical challenge. Quantification is associated with a high uncertainty. The sources of uncertainty are multiple, but the major one is related to data interpretation and integration, which is partially derived from insufficiently efficient sample preparation. Recently, an updated ISO method for the analysis of mineral oil in fats and oils and a standard operating procedure for infant formula analysis have been published. Both methods reported significantly different (up to 1.25) distributions of the internal standards used for quantification (i.e., tri-tert-butyl benzene (TBB) and 2-methyl naphthalene (2-MN)) over the different solvent phases used in the saponification step. ResultsIn this work, a microwave-assisted saponification and extraction method was optimized for MOAH analysis to solve the problem related to the MOAH internal standards partition. The paper examines the impact of the solvent mixture used, the concentration of KOH on the partition of TBB and 2-MN, and the effect of the matrix and the washing step to extract the unsaponifiable fraction containing the mineral oils. SignificanceThe optimized procedure achieved a TBB/2-MN ratio of 1.05 ± 0.01 tested in five different fats and oils, namely, sunflower, rapeseed, coconut, palm, and extra virgin olive oils. The method can significantly contribute to reducing the uncertainty of the MOAH quantification when saponification is applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.