Abstract

Ferroelectric strontium barium niobate (SBN) powder was synthesized by solid-state route. The green compacts were sintered in the temperature range 1250–1350 °C in a microwave furnace. The microstructural study, using SEM, revealed the grain size in the range 2–20 μm without microcracks, depending on the sintering temperature. This is in contrast to that obtained conventionally for sintered SBN powder synthesized by solid-state route, which resulted in duplex microstructure with microcracks [N.S. VanDamme, A.E. Sutherland, L. Jones, K. Bridger, S.R. Winzer, J. Am. Ceram. Soc. 74 (1991) 1785; P.K. Patro, A.R. Kulkarni, C.S. Harendranath, Ceram. Int. 30 (2004) 1405; P.K. Patro, Trans. Ind. Inst. Metals 59 (2006) 229]. Impedance analyzer and ferroelectric hysteresis loop tracer were used for the dielectric, ferroelectric, I– V and electric fatigue measurements. Microwave sintering also resulted in a dielectric maxima ε max 2590 at 1 kHz (compared to 1103 for conventional sintering [P.K. Patro, A.R. Kulkarni, C.S. Harendranath, Ceram. Int. 30 (2004) 1405]) for the sintering temperature of 1350 °C. Similar improvement in microwave-sintered SBN was observed depending on their sintering condition. The origin of this difference is attributed to microstructural differences arising from difference in heating method. In this paper the observed dielectric and ferroelectric behavior have been correlated with different sintering conditions and consequent microstructure due to microwave sintering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call