Abstract
Microarray data analysis directly relates with the state of disease through gene expression profile, and is based upon several feature extractions to classification methodologies. This paper focuses on the study of 8 different ways of feature selection preprocess methods from 4 different feature selection methods. They are Minimum Redundancy-Maximum Relevance (mRMR), Max Relevance (MaxRel), Quadratic Programming Feature Selection (QPFS) and Partial Least Squared (PLS) methods. In this study, microarray datasets of colon cancer and leukemia cancer were used for implementing and testing four different classifiers i.e. K-Nearest-Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM) and Neural Network (NN). The performance was measured by accuracy and AUC (area under the curve) value. The experimental results show that discretization can somehow improve performance of microarray data analysis, and mRMR gives the best performance of microarray data analysis on the colon and leukemia datasets. We also list some results on comparative performance of methods for the specific (data-ratio) number of features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.