Abstract

Methylation reactions are involved in the biosynthesis of various natural molecules, in which S-adenosyl-L-methionine (SAM) acts as the principal biological methyl donor. The limited availability of SAM often affects the biosynthesis of methylated metabolites in cells, especially when heterologous SAM-mediated methyltransferases are employed. To solve this problem, a methyl supply system driven by betaine was developed in this study to enhance SAM availability in cells. A reconstructed methionine cycle was designed in E. coli using betaine as the methyl source by introducing betaine-homocysteine methyltransferase. Ferulic acid served as a model product was used to test the efficiency of methyl supply system. ATP is a co-factor for SAM biosynthesis and a pathway for ATP regeneration from adenosine was introduced to maintain the stability of the adenylate pool. After testing two different S-adenosyl-L-homocysteine (SAH) hydrolysis pathways, the optimized SAHase pathway was adopted for converting SAH back to homocysteine (Hcy). Thus, a methyl supply system was developed which increased SAM availability and therefore improved the titer and productivity of ferulic acid by 12.6-fold and 15.9-fold, respectively. The system was also applied successfully for other methyltransferase-catalyzed reactions. This work provides an efficient methyl supply system for enhanced production of methylated chemicals using betaine as the methyl source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call