Abstract
The International Thermonuclear Experimental Reactor neutral beam injector includes an ion source which can produce D− ion beams for 1 h, accelerated at the energy of 1 MeV. An ion source consists of a driver where the plasma is produced by the application of the radio frequency (RF) power to an inductive coil. This paper presents an improved methodology which provides an estimation of the power transfer efficiency to the plasma of the driver. The developed methodology is based on different mechanisms which are responsible for the plasma heating (ohmic and stochastic) and an electrical model describing the power transfer to the plasma. As a first approximation in a previous work, a transformer model was assumed as an electrical model. In this paper, a main improvement is introduced based on the development of a multi-filament model which takes into account the mutual coupling between the RF coil, the plasma, and the passive metallic structure. The methodology is applied to the negative ion optimization 1 (NIO1), a flexible negative ion source, currently in operation at Consorzio RFX, Italy. The results from the two models, transformer and multi-filament, are presented and compared in terms of plasma equivalent resistance and power transfer efficiency. It is found that results obtained from both the transformer and the multi-filament model follow the same trend in comparison with the applied frequency and the other plasma parameters like electron density, temperature, and gas pressure. However, lower values of the plasma equivalent resistance and power transfer efficiency are observed with the multi-filament model. The multi-filament model reproduces a more realistic experimental scenario where the power losses due to the generation of the eddy currents in the metallic structure are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.