Abstract

The world economy is currently moving towards more sustainable approaches. Lignocellulosic biomass has been widely used as a substitute for fossil sources since it is considered a low-cost bio-renewable resource due to its abundance and continuous production. Compost habitats presenting high content of lignocellulosic biomass are considered a promising source of robust lignocellulose-degrading enzymes. Recently, several novel biocatalysts from different environments have been identified using metagenomic techniques. A key point of the metagenomics studies is the extraction and purification of nucleic acids. Nevertheless, the isolation of high molecular weight DNA from soil-like samples, such as compost, with the required quality for metagenomic approaches remains technically challenging, mainly due to the complex composition of the samples and the presence of contaminants like humic substances. In this work, a rapid and cost-effective protocol for metagenomic DNA extraction from compost samples composed of lignocellulosic residues and containing high content of humic substances was developed. The metagenomic DNA was considered as representative of the global environment and presented high quality (> 99% of humic acids effectively removed) and sufficient quantity (10.5-13.8µgg-1 of compost) for downstream applications, namely functional metagenomic studies. The protocol takes about 4h of bench work, and it can be performed using standard molecular biology equipment and reagents available in the laboratory. KEY POINTS/HIGHLIGHTS: • Metagenomic DNA was successfully extracted from compost samples rich in humic acids • The improved protocol was established by optimizing the cell lysis method and buffer • Complete removal of humic acids was achieved through the use of activated charcoal • The suitability of the DNA was proven by the construction of a metagenomic library.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.