Abstract

This paper relates a further development of an earlier work by the authors, in which they presented a method for deriving the four independent elastic constants (longitudinal and transverse Young’s moduli, in-plane shear modulus and major Poisson’s ratio) of an orthotropic material from resonance data obtained in a modal analysis of a freely-supported plate made out of the material. In the present work, simple averaging, as opposed to the weighted averaging employed in the earlier version, is utilized. The use of three modes and six modes is compared on the basis of results of both the forward and the inverse problems. Results are obtained for materials spanning orthotropy ratios from unity (i.e., isotropic) to about 13. The results suggest that, in comparison with our earlier method, the improved method is easier to use and is just as accurate. The adaptability of the basic method developed by the authors to various levels and types of refinement is also demonstrated, as is the potential of the method for fast characterization of elastic properties of advanced composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.