Abstract

As a new attempt to design a precise mathematical model for the proton exchange membrane fuel cell (PEMFC), in this paper, three recently-proposed well-established optimizers: horse herding optimization algorithm (HOA), seagull optimization algorithm (SOA) and gradient-based optimizer (GBO) integrated with two newly-proposed effective strategies, namely self-adaptive strategy, and ranking-based updating strategy, have been extensively investigated to accurately estimate the unknown parameters of this model for accomplishing a better output voltage of the simulated PEMFC stacks. Those hybridized algorithms were briefly named HHOA, HSOA, and HGBO. To assess the performance of those proposed algorithms, six common PEMFC stacks were used and their outcomes were extensively compared with the standard algorithms and some of the state-of-the-arts under various performance metrics and the Wilcoxon rank-sum test. The experimental findings show the effectiveness of both HGBO and HSOA in terms of convergence speed and final accuracy; However, HSOA could be more stable. The source code of this study is publicly available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://drive.matlab.com/sharing/d9263036-9f80-4a40-bad9-ad476ed19c69</uri> .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call