Abstract

By modifying the molecular dipole moments with lateral monofluorine substituent, improved mesophase stabilities were obtained for novel benzoxazole derivatives, 2-(4ʹ-alkoxy-3-fluorobiphenyl-4-yl)-benzoxazole liquid crystals (coded as nPPF(3)Bx). The series of nPPF(3)Bx with lateral monofluorine substituent ortho to benzoxazole group have larger calculated dipole moments by about 2 D than the corresponding fluorine-substituted analogs (compounds I) with lateral monofluorine ortho to alkoxy group; it is interesting to note that they show lower melting and clearing points but better mesophase stability with wider mesophase ranges for the molecules with both polar (NO2, Cl) and nonpolar (CH3, H) terminal groups. Meanwhile, compounds nPPF(3)Bx show greater red-shifted photoluminescence emissions than compounds I, which suggest that π–π interaction between molecules is reinforced by the enhanced dipole–dipole interaction caused by increased dipole moments. These results suggest that modification of the molecular dipole moment is an effective method to improve the mesophase stability of the classical mesogenic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.