Abstract
The growth of the global economy in recent years has resulted in an increase in infrastructure projects worldwide and consequently, this has led to an increase in the quantity of waste generated. Two recycled materials, namely garnet residues (GR) and tire-derived aggregates (TDA), were used to improve mechanical properties of soft clay (SC) subgrade in this study. GR was evaluated as a replacement material in SC prior to Type I Portland cement stabilization. TDA was also studied as an elastic material in cement-stabilized SC–GR. The laboratory tests on the cement–TDA-stabilized SC–GR included unconfined compressive strength (UCS), indirect tensile stress (ITS) and indirect tensile fatigue (ITF). Microstructural analysis on the cement–TDA-stabilized SC–GR was also performed to illustrate the role of GR and TDA contents on the degree of hydration. The UCS of cement-stabilized SC–GR increased when cement content increased from 0% to 2%. Beyond 2% cement content, the UCS development was slightly slower, possibly due to the presence of insufficient water for hydration. The GR reduces the specific surface and particle contacts of the SC–GR blends to be bonded with cementitious products. The optimum SC:GR providing the highest UCS was found to be 90:10 for all cement contents. Increased amounts of GR led to a reduction in UCS values due to its high water absorption, resulting in the insufficient water for the cement hydration. Moreover, the excessive GR replacement ratio weakened the interparticle bond strength due to its smooth and round particles. The TDA addition can enhance the fatigue resistance of the cement-stabilized SC–GR. The maximum fatigue life was found at 2% TDA content. The excessive TDA caused large amounts of micro-cracks in cement–TDA-stabilized SC–GR due to the low adhesion property of TDA. The SC:GR = 90:10, cement content = 2% and TDA content = 2% were suggested as the optimum ingredients. The outcome of this research will promote the usage of GR and TDA to develop a green high-fatigue-resistant subgrade material.
Highlights
The continuous growth of emerging and developed economies has led to an increase in infrastructure projects, such as roads
The soft clay (SC)–garnet residues (GR) blends can only be used as stabilized subgrade material and its 7-day unconfined compressive strength (UCS) must be greater than the minimum requirement of 294 kPa [43]
This research aims to examine the feasibility of using GR as a replacement material in soft clay (SC) prior to cement stabilization to be a subgrade material
Summary
The continuous growth of emerging and developed economies has led to an increase in infrastructure projects, such as roads. Sustainability 2021, 13, 11692 economic cities in the southern region of Thailand and most of its population lives in coastal areas. These coastal areas are underlain by soft clay (SC) deposits with high organic matter contents and with poor geotechnical properties which are sensitive to moisture change [1,2]. Ground improvement is normally required before the construction of highway and road projects. The usage of low CO2 emission cementing agents with an alternative method for ground improvement is an interesting issue in research and development in transportation geotechnics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.