Abstract

This study investigated ways to improve both the mechanical and thermal properties of a Cu-Ni-Sn-P alloy manufactured with selective laser melting (SLM) using aging treatment. Homogenization heat treatment was conducted to the alloy at 820 °C for 12 h, and aging heat treatment was applied at 400 °C for 0.25, 0.5, 1, 2 and 4 h. Initial microstructure analysis identified (Cu, Ni)3P phase precipitates of a few μm in size, and the size and fraction of precipitates increased as aging heat treatment time increased. Room temperature compressive tests on the homogenized sample identified a yield strength of 135.7 MPa. Meanwhile, the yield strength of the sample that underwent 2-hour aging treatment measured 454.5 MPa, indicating a three times greater improvement of the mechanical properties than the homogenized sample. This was confirmed to have been contributed by precipitation hardening from the increased precipitate size and fraction as a result of aging treatment. In addition, thermal conductivity also increased as aging treatment was performed. In particular, an aging time greater than 2 h achieved an approximately 30% increase in thermal conductivity compared to the homogenized sample. Through aging treatment, both the mechanical property and thermal conductivity of an SLM-built Cu-Ni-Sn-P alloy were improved. Based on these findings, this study also discussed the underlying mechanisms according to aging time with respect to microstructural changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.