Abstract
We present significantly improved measurements of turbulent velocities in the hot gaseous haloes of nearby giant elliptical galaxies. Using deep XMM–NewtonReflection Grating Spectrometer (RGS) observations and a combination of resonance scattering and direct line broadening methods, we obtain well bounded constraints for 13 galaxies. Assuming that the turbulence is isotropic, we obtain a best-fitting mean 1D turbulent velocity of ∼110 km s−1. This implies a typical 3D Mach number ∼0.45 and a typical non-thermal pressure contribution of ∼6 per cent in the cores of nearby massive galaxies. The intrinsic scatter around these values is modest – consistent with zero, albeit with large statistical uncertainty – hinting at a common and quasi-continuous mechanism sourcing the velocity structure in these objects. Using conservative estimates of the spatial scales associated with the observed turbulent motions, we find that turbulent heating can be sufficient to offset radiative cooling in the inner regions of these galaxies (<10 kpc, typically 2–3 kpc). The full potential of our analysis methods will be enabled by future X-ray micro-calorimeter observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.