Abstract

With 2.5× the previously reported exposure, the Daya Bay experiment has improved the measurement of the neutrino mixing parameter sin22θ13=0.089±0.010(stat)±0.005(syst). Reactor anti-neutrinos were produced by six 2.9 GWth commercial power reactors, and measured by six 20-ton target-mass detectors of identical design. A total of 234,217 anti-neutrino candidates were detected in 127 days of exposure. An anti-neutrino rate of 0.944±0.007(stat)±0.003(syst) was measured by three detectors at a flux-weighted average distance of1648 m from the reactors, relative to two detectors at 470 m and one detector at 576 m. Detector design and depth underground limited the background to 5±0.3% (far detectors) and 2±0.2% (near detectors) of the candidate signals. The improved precision confirms the initial measurement of reactor anti-neutrino disappearance, and continues to be the most precise measurement of θ13.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.