Abstract
The magnetoelectric (ME) composite with the flux concentration effect is designed, fabricated, and characterized for detecting weak ac magnetic-field. The high-permeability Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils act as flux concentrators and are bonded at the free ends of traditional ME laminates. With the improved ME responses in the proposed ME composite based on the flux concentration effect, the output sensitivities under zero-biased magnetic field can reach 7 V/Oe and 15.8 mV/Oe under the resonance frequency of 177.36 kHz and the off-resonance frequency of 1 kHz, respectively. The results indicate that the proposed ME composites show promising applications for high-sensitivity self-biased magnetic field sensors and ME transducers.
Highlights
The magnetoelectric (ME) composite with the flux concentration effect is designed, fabricated, and characterized for detecting weak ac magnetic-field
The highpermeability Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils act as flux concentrators and are bonded at the free ends of traditional ME laminates
With the improved ME responses in the proposed ME composite based on the flux concentration effect, the output sensitivities under zero-biased magnetic field can reach 7 V/Oe and 15.8 mV/Oe under the resonance frequency of 177.36 kHz and the off-resonance frequency of 1 kHz, respectively
Summary
The magnetoelectric (ME) composite with the flux concentration effect is designed, fabricated, and characterized for detecting weak ac magnetic-field. Improved magnetoelectric effect in magnetostrictive/ piezoelectric composite with flux concentration effect for sensitive magnetic sensor
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.