Abstract

A combination of magnetic solid-phase extraction using an efficient and cheap magnetic sorbent obtained from sand and dispersive liquid-liquid microextraction has been developed for the extraction of nine multiclass pesticides (clodinafop-propargyl, haloxyfop-R-methyl, fenoxaprop-P-ethyl, oxadiazon, penconazole, diniconazole, chlorpyrifos, fenazaquin, and fenpropathrin) from commercial fruit juices (sour cherry, pomegranate, grape, watermelon, orange, apricot, and peach juices). The enriched pesticides were determined by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. The sorbent was natural iron oxide entrapped in silica along with some impurities. In this method, to extract the analytes from the samples, an appropriate amount of the magnetic sorbent (at mg level) is added. Then the sorbent particles are isolated from the solution using an external magnetic field and the adsorbed analytes are desorbed from the sorbent by acetone. In the following, a dispersive liquid-liquid microextraction procedure is carried out to concentrate the analytes more and to reach low limits of detection. Under optimized extraction conditions, the method revealed satisfactory repeatability (relative standard deviation ≤8% for intra-day and inter-day precision), reasonable extraction recovery (43.3-55.9%), high enrichment factors (433-559), and low limits of detection (0.45-0.89 μg L-1 ). The method was applied in the analysis of pesticides in various fruit juices. Chlorpyrifos was found in peach juice at a concentration of 27 ± 2 μg L-1 (n=3) using a gas chromatography-flame ionization detector. To verify the results, the peach juice was also injected into gas chromatography-mass spectrometry after applying the proposed extraction method. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call