Abstract

BackgroundDeclining levels of surfactant protein A (SP-A) after lung transplantation are suggested to indicate progression of ischemia/reperfusion (IR) injury. We hypothesized that the previously described preservation-dependent improvement of alveolar surfactant integrity after IR was associated with alterations in intraalveolar SP-A levels.MethodsUsing immuno electron microscopy and design-based stereology, amount and distribution of SP-A, and of intracellular surfactant phospholipids (lamellar bodies) as well as infiltration by polymorphonuclear leukocytes (PMNs) and alveolar macrophages were evaluated in rat lungs after IR and preservation with EuroCollins or Celsior.ResultsAfter IR, labelling of tubular myelin for intraalveolar SP-A was significantly increased. In lungs preserved with EuroCollins, the total amount of intracellular surfactant phospholipid was reduced, and infiltration by PMNs and alveolar macrophages was significantly increased. With Celsior no changes in infiltration or intracellular surfactant phospholipid amount occurred. Here, an increase in the number of lamellar bodies per cell was associated with a shift towards smaller lamellar bodies. This accounts for preservation-dependent changes in the balance between surfactant phospholipid secretion and synthesis as well as in inflammatory cell infiltration.ConclusionWe suggest that enhanced release of surfactant phospholipids and SP-A represents an early protective response that compensates in part for the inactivation of intraalveolar surfactant in the early phase of IR injury. This beneficial effect can be supported by adequate lung preservation, as e.g. with Celsior, maintaining surfactant integrity and reducing inflammation, either directly (via antioxidants) or indirectly (via improved surfactant integrity).

Highlights

  • Declining levels of surfactant protein A (SP-A) after lung transplantation are suggested to indicate progression of ischemia/reperfusion (IR) injury

  • Surfactant protein A Labelling for SP-A was strongest over the lattice structures of tubular myelin figures in all study groups and was significantly increased in lungs after ischemia and reperfusion (IR) (Table 2; Fig. 3)

  • We showed that the labelling density of tubular myelin-associated SP-A was significantly enhanced after IR, and that the previously reported increase of the intraalveolar surfactant phospholipids [9] was paralleled by a trend to decreased intracellular SP-A levels

Read more

Summary

Methods

Using immuno electron microscopy and design-based stereology, amount and distribution of SP-A, and of intracellular surfactant phospholipids (lamellar bodies) as well as infiltration by polymorphonuclear leukocytes (PMNs) and alveolar macrophages were evaluated in rat lungs after IR and preservation with EuroCollins or Celsior. Animals Twenty-four male Sprague-Dawley rats (Crl:CD; Charles River, Sulzfeld, Germany) received pentobarbital intraperitoneally (Nembutal 1 mg/kg body weight), were intubated by tracheostomy, and heparinized via the vena cava inferior. Animal experiments were performed according to the Helsinki convention for the use and care of animals. The experiments have been approved by the regional government

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call