Abstract

To build a secure cryptography system in the post-quantum era, one must find the minimum security parameters against quantum attacks by estimating the quantum resources of a fault-tolerant quantum computer. In a fault-tolerant quantum computer, errors must reach an acceptable level for practical uses according to error detection and error correction processes. However, these processes utilize additional quantum resources. As the depth of the quantum circuit increases, the computation time per qubit increases together with the processing errors. Therefore, in terms of errors in quantum circuits, it is a fundamental requirement to reduce the depth by trading off the number of qubits. This paper proposes novel low-depth SHA3 quantum circuit implementations for fault-tolerant quantum computers to reduce errors. The proposed SHA3 quantum circuit was implemented with the aim of optimizing the quantum circuit depth through a trade-off between the number of qubits, the quantum gate, and the quantum depth in each function. Compared to other state-of-art techniques, the proposed method achieved T-depth and full-depth reductions of 30.3% and 80.05%, respectively. We believe that this work will contribute to the establishment of minimum security parameters for SHA3 in the quantum era.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call