Abstract

Background Crown fires are an ecologically necessary but hazardous process in conifer forests. Prediction of their behaviour in Canada has largely depended on the Canadian Forest Fire Behaviour Prediction System, in which fire weather indices drive primarily fixed fuel type models. The Crown Fire Initiation and Spread (CFIS) system presents a more flexible approach to predicting crown fire occurrence than fixed fuel type models. Aims Using a multi-decadal database of experimental fires carried out in conifer plots (1960–2019, n = 113), our aim was to develop updated models based on the CFIS system approach, fitting crown fire occurrence models to fire environment variables using logistic regression. Methods We tested alternative fuel moisture estimates and compared various model forms using repeated cross-validation. In two-storeyed stands, crown fire occurrence was defined as the involvement of lower canopy stratum fuels. Key results Final models based on wind speed, fuel strata gap, litter moisture and surface fuel consumption predicted crowning events correctly in up to 92% of cases in training data (89% in cross-validation). Conclusions and implications These new models offer improved accuracy and flexibility that will help users assess how competing environmental factors interact under different fuel treatments and wildfire scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.