Abstract

Gold nanoparticles bound to substrates exhibit localized surface plasmon resonance (LSPR) in their optical extinction spectra at visible and near-infrared wavelengths. The LSPR wavelength is sensitive to the surrounding refractive index, enabling a simple, label-free immunoassay when capture antibodies are bound to the nanoparticles. Gold bipyramids are nanoparticles with a penta-twinned crystal structure, which have a sharp LSPR because of their high monodispersity. Bipyramid substrates were found to have a refractive index sensitivity ranging from 288 to 381 nm/RIU (-0.62 to -0.68 eV/RIU), increasing with the nanoparticle size and aspect ratio. In an immunoassay, the bipyramid substrates yielded higher sensitivity than nanorods and nanospheres. An immunoassay sensitivity constant which depends on both the optical properties of the nanoparticle and conjugation chemistry was found to be K(LSPR) = 0.01 nm x microm(2) for gold bipyramids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.