Abstract
We here developed a series of Corynebacterium glutamicum strains with gradual decreased specific citrate synthase (CS) activity and quantified in a multifaceted approach the consequences of residual activity on the transcriptome, metabolome, and fluxome level as well as on L-lysine formation and growth. We achieved an intended gradual L-lysine yield increase and recognized and overcame further new limitations in the L-lysine biosynthesis pathway to result in a strain with the highest yield reported so far when assayed under comparable conditions. As a non-intended outcome, a detailed flux analysis revealed an almost constant flux through CS at 10% remaining CS activity, whereas the metabolome data revealed an increase in the oxaloacetate and acetyl-CoA concentrations. Hence reduced CS activity is apparently efficiently buffered by increased concentrations of CS substrates, implying a certain robustness of the central metabolism in response of the imposed gene expressions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.