Abstract

MXenes are regarded as promising electrode materials for lithium-ion batteries owing to their high electrical conductivity and two-dimensional structure but suffer from low intrinsic specific capacities. In this study, we fabricate sulphur-doped multilayer Ti3C2Tx MXenes via calcination and annealing using sublimed sulphur as the sulphur source. After sulphur doping, the interlayer spacing of Ti3C2Tx increases, which is favourable for Li-ion insertion. The Ti3C2Tx MXene@S composite exhibits excellent electrochemical performance. A high reversible specific capacity of 393.8 mAh g−1 at a current density of 100 mA g−1 after 100 cycles is obtained. Additionally, a negative fading phenomenon is observed when the specific capacity increases to 858.9 mAh g−1 after 2550 cycles at 1 A g−1 and to 322.2 mA h g−1 after 3600 cycles at 5 A g−1 from the initial 267.3 mAh g−1. We systematically investigate the effects of two different binders (polyvinylidene difluoride and carboxymethyl cellulose, hereinafter abbreviated as PVDF and CMC, respectively) on the electrochemical performance of the Ti3C2Tx MXene@S composite and discovered that the electrode using the CMC binder exhibits better lithium-ion storage performance than that using the PVDF binder, which is attributed to the lower charge transfer resistance, higher ion diffusivity, and enhanced adhesion force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.