Abstract

In this work, single (Co3O4), binary (Co3O4/ZnO) and ternary (Co3O4/ZnO/NiO) nanomaterials were successfully synthesized by Pechini method followed by a calcination step. Electrochemical lithium storage capabilities of the anode materials were studied. The results showed that the best capacity retention and lowest voltage hysteresis was achieved with ternary material. The ternary material showed a first cycle charge capacity of 649 mAh/g at 70 mA/g and maintained 83% of this capacity after 39 cycles. The results demonstrated the positive impact of multiple element strategy on the cycle life of anode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call