Abstract

A two-stage cultivation method involving the initial growth in optimized conditions for biomass production followed by those for lipid production in oleaginous brackish diatom Navicula phyllepta MACC8 resulted in a proportional increase of lipid concentration along with biomass production. The diatom was further subjected to stress conditions by altering the nutrient components such as nitrate, phosphate, silicate, and temperature. Silicon deprivation resulted in the highest lipid percentage of 28.78% of weight at the end of the 18th day of the second stage. A significant increase in lipid content was observed on the complete removal of the nutrients silicon and urea one at a time, while the biomass showed a considerable reduction. The application of multiple nutrient stress conditions had a profound influence on the increased rate of lipid production. A combination of phosphate deprivation, silicate limitation and temperature reduction resulted in a significant increase in lipid percentage of 32.13% at the cost of reduced biomass (1.1g L-1), whereas phosphate deprivation, urea limitation, and temperature reduction resulted in lipid percentage of 27.58% with a biomass of 1.44g L-1 at the end of the second stage. Further, the results were supported by Nile red staining, FTIR, fatty acid profile and oxidative stress marker analyses. The changes in biochemical composition and oxidative stress parameters within the various stress conditions demonstrated the profound influence of the selected stress factors on the biodiesel productivity of the diatom, besides its stress tolerance. A two-phase culturing system, with multifactor stress application, especially nitrogen limitation along with phosphate starvation and temperature stress, would be the suitable method for gaining maximum biomass productivity and lipid content in diatom Navicula phyllepta MACC8 towards biofuel production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.