Abstract

Development of immobilized lipase with excellent catalytic performance and low cost is the major challenge for large-scale industrial applications. In this study, green renewable microcrystalline cellulose (MCC) that was hydrophobically modified with D-alanine (Ala) or L-lysine (Lys) was used for immobilizing Candida antarctica lipase B (CALB). The improved catalytic properties were investigated by experimental and computational methods. CALB immobilized on MCC-Ala with higher hydrophobicity showed better catalytic activity than CALB@MCC-Lys because the increased flexibility of the lid region of CALB@MCC-Ala favored the formation of open conformation. Additionally, the low root mean square deviation and the high β-sheet and α-helix contents of CALB@MCC-Ala indicated that the structure became more stable, leading to a significantly enhanced stability (54.80% and 90.90% relative activity at 70 °C and pH 9.0, respectively) and good reusability (48.92% activity after 5 cycles). This study provides a promising avenue to develop immobilized lipase with high catalytic properties for industry applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call