Abstract
Recently the COVID’19 is extensively increasing around the world with many challenges for researchers. Rigorous respiratory disease corona virus 2 show aggression to many parts of COVID’19 affected patients, together with brain and lungs. The changeableness of Corona virus with likely to infect Central Nervous System emphasize the necessity for technological development to identify, handle, and take care of brain damages in COVID’19 patients. An exact short-term predicting the quantity of newly infected and cured cases is vital for resource optimization to stop or reduce the growth of infection. The previous system designed a Linear Decreasing Inertia Weight based Cat Swarm Optimization with Half Binomial Distribution based Convolutional Neural Network (LDIWCSO-HBDCNN) approach for COVID-19 forecasting. However, the ensemble learning is required to improve the prediction outcome via integrating many approaches. This approach allows the production of better predictive performance compared to a single model. For solving this problem, the proposed system designed an Improved Linear Factor based Grasshopper Optimization Algorithm with Ensemble Learning (ILFGOA with EL) for covid-19 forecasting. Initially, the COVID-19 forecasting dataset is taken as an input. With the help of min-max approach, data normalization is done. Then the optimal features are selected by using Improved Linear Factor based Grasshopper Optimization Algorithm (ILFGOA) algorithm to improve the prediction accuracy. Based on the selected features, Ensemble Learning (EL) which includes Hyperparameter based Convolutional Neural Network (HCNN) is utilized to identify infected and demise cases across india for a period of time. The outcome of analysis shows that the introduced method attains better execution against previous system with regard to error rate, accuracy, precision, recall and f-measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.