Abstract

We present improvements in light outcoupling for the example of red, bottom-emitting, ITO free OLEDs. As an optimization tool we use experimentally verified coupled modelling approach, where we simulate a complete OLED device, including thin-film coherent stacks as well as thick microtextured incoherent layers (substrate). We calibrate the combined model on a fabricated small sample OLED. The research of lateral limitations and limited integrating sphere opening effects show that small area effects can lead to large deviations in outcoupling efficiency with respect to the large area devices commonly used in lighting applications. On the large area devices, we focus on the optimization of the thinfilm stack cavity in the OLED by tuning the thicknesses of thin layers. We show the importance of including the complete device in the optimization process, including the thin-film stack and the thick substrate with the outcoupling textures. We show that an OLED with an optimized planar cavity and applied external positive shaped dome texture can reach up to 50.5 % light extraction efficiency according to simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call