Abstract

The pyrolysis of the biomass Agave salmiana bagasse (10 K/min, ambient to 700 °C) was investigated in the absence and presence of Aerosil and MCM-41 catalysts. MCM-41 was synthetized using a typical hydrothermal method and characterized with XRD, SAXS, SEM, TEM, and nitrogen physisorption to confirm the presence of unidimensional 3.4 nm diameter pores. Pyrolysis products were monitored online with mass spectrometry (MS), analyzing the production of 29 different compounds, clustered in several groups, namely, olefins (ethene, 2-butene, 1,3-butadiene), oxygenated compounds (methanol, 2-methylbutanol, acetic acid), furan derivatives (furan, furfural, 2-methylfurane), and aromatic compounds (BTEX). Complete decomposition of the cellulose and hemicellulose content of the biomass was observed at temperatures below 400 °C. Lignin decomposition was completed by 550 °C. Catalyst-assisted pyrolysis showed reduced acetic acid and methanol formation with Aerosil and MCM-41. The use of Aerosil does not affect the overall production of olefins, yet increases benzene yield, while reducing the production of phenol, furan, and furan derivatives. With MCM-41, there is increased production of olefins, furan, furan derivatives, cyclohexanone and BTEX, yet phenol production is decreased. At temperatures below 400 °C, the product formation pattern is comparable to non-catalytic pyrolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.