Abstract

We show that a high-efficiency diffraction grating can be embedded into nanoparticulate TiO2 film via imprinting combined with TiCl4 treatment. The grating-embedded film consists of two layers in intimate contact. A thin TiO2 layer was first patterned on a glass substrate by imprinting. The patterned layer was TiCl4-treated with a higher concentration than the over-coated thicker layer, so that it diffracts incident light as a refractive-index grating. Gratings with a period scaled down to 1 µm could be embedded into the film. Diffraction efficiency increased with an increasing grating height and an efficiency over 80% was achieved in the near-ultraviolet and visible range. Dye-sensitized solar cells fabricated using a grating-embedded TiO2 photoanode exhibited much better photovoltaic performance than those without a grating. It was also found that the incorporation of a diffraction grating greatly enhances the photocatalytic activity of nanoparticulate TiO2 film. All these are attributed to improved light harvest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.