Abstract

Abstract Since the launch of the Ocean Topography Experiment (TOPEX)/Poseidon in 1992, several studies have demonstrated that dual-frequency altimeter measurements cannot only accurately detect rain events but can also be used to infer quantitative values. The main problems with these techniques are the limited time and space sampling of nadir-looking instruments and the uncertainty in the height of the freezing level necessary to infer the surface rain rate from the measured signal attenuation. In addition to radar altimeters, altimetric satellites carry microwave radiometers designed to correct for atmospheric water effects. Using a radiative transfer model and simplified rainy atmospheres, a method of inversion of the microwave brightness temperatures in terms of freezing level is presented. The surface rain rate is then computed from the altimeter attenuation and the radiometer freezing level. The rain climatology is computed for the three altimeters currently in operation using a mixed lognormal distribution. Comparison with the Global Precipitation Climatology Project and Special Sensor Microwave Imager (SSM/I) climatologies shows that the use of freezing level greatly improves the altimeter climatology, which is of the same quality as that of the SSM/I for annual mean. The merging of the three altimeters is investigated. The resulting monthly mean rain rates are comparable to those derived from SSM/I. The high along-track resolution of altimeters also allows the determination of the length of rain events. The mean length is close to the SSM/I footprint size in the Tropics, but at higher latitude 80% of the rain has length scales smaller than 10 km, which might explain the relative underestimation of the mean rain rate by SSM/I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.