Abstract

Based on a recently developed approximate wave-equation solver, we have developed a methodology to reduce the computational cost of seismic migration in the frequency domain. This approach divides the domain of interest into smaller subdomains, and the wavefield is computed using a sequential process to determine the downward- and upward-propagating wavefields — hence called a double-sweeping solver. A sequential process becomes possible using a special approximation of the interface conditions between subdomains. This method is incorporated into the least-squares migration framework as an approximate solver. The associated computational effort is comparable to one-way wave-equation approaches, yet, as illustrated by the numerical examples, the accuracy and convergence behavior are comparable to that of the full-wave equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call