Abstract

New radiative lifetime measurements using time-resolved laser-induced fluorescence are reported for the lowest six even-parity levels of Eu II. Branching fractions, measured from Fourier transform spectra, are combined with these lifetimes to determine atomic transition probabilities for the strongest blue-UV lines and additional yellow-red lines of Eu II. These results are compared with published data, and generally good agreement is found. Recommended hyperfine structure constants and isotopic shifts for these lines are also assembled from the literature and supplemented, as needed, using results from nonlinear least-squares fits of line profiles in Fourier transform spectra. These laboratory data are applied in a new determination of the solar Eu elemental abundance, yielding log10 e(Eu) = 0.52 ± 0.01, with ±0.04 estimated for each of internal (scatter) and external (systematic) uncertainties. From analysis of the profiles of three Eu II lines, primarily λ4129, isotopic fractions of 151Eu and 153Eu are shown to be consistent with their values in meteoritic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.