Abstract

Data exposure and privacy violations may happen when data is exchanged between organizations. Data anonymization gives promising results for limiting such dangers. In order to maintain privacy, different methods of k-anonymization and l-diversity have been widely used. But for larger datasets, the results are not very promising. The main problem with existing anonymization algorithms is high information loss and high running time. To overcome this problem, this paper proposes new models, namely Improved k-Anonymization (IKA) and Improved l-Diversity (ILD). IKA model takes large k-value using a symmetric as well as an asymmetric anonymizing algorithm. Then IKA is further categorized into Improved Symmetric k-Anonymization (ISKA) and Improved Asymmetric k-Anonymization (IAKA). After anonymizing data using IKA, ILD model is used to increase privacy. ILD will make the data more diverse and thereby increasing privacy. This paper presents the implementation of the proposed IKA and ILD model using real-time big candidate election dataset, which is acquired from the Madhya Pradesh State Election Commission, India (MPSEC) along with Apache Storm. This paper also compares the proposed model with existing algorithms, i.e. Fast clustering-based Anonymization for Data Streams (FADS), Fast Anonymization for Data Stream (FAST), Map Reduce Anonymization (MRA) and Scalable k-Anonymization (SKA). The experimental results show that the proposed models IKA and ILD have remarkable improvement of information loss and significantly enhanced the performance in terms of running time over the existing approaches along with maintaining the privacy-utility trade-off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.