Abstract

Conventional alternating field (AF) demagnetization of the magnetite-bearing claystone foundations of a Saxon or late medieval lime kiln in Lincolnshire, England fail to isolate stable characteristic remanences, or remanences compatible with possible contemporary geomagnetic field orientations. Consolidation of the material prevented thermal demagnetization. When low temperature demagnetization (LTD) precedes AF demagnetization, however, the vector plots show a stable characteristic (primary) component. Magnetic anisotropy measurements show that the LTD did not significantly disturb the mineral fabric of the claystone, that the mineral fabric did not deflect the palaeofield, and that AF demagnetization did not induce a field-impressed anisotropy during the experiments. Anisotropy of low-field magnetic susceptibility (AMS) is affected by all minerals, and therefore the anisotropy of the magnetite was isolated by measuring anisotropy of anhysteretic remanence (AARM); this is of more relevance in evaluating the potential for palaeofield deflection. Thus, we conclude that LTD preceding AF demagnetization is responsible for improving the isolation of a characteristic remanence, which then favours a late medieval age for the kiln foundation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.