Abstract

Ge MOS capacitors with tri-layer gate dielectric are proposed by using GeON interlayer, TaON sandwich layer, and HfTiON high-k dielectric. Very small capacitance equivalent thickness (0.79~0.91 nm) is achieved. Experimental results show that the NO pretreated sample exhibits the best electrical properties, such as low interface-state density (5.4 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> eV <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> ), low gate leakage current density (~ 3.16 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> Acm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> at V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g</sub> - V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fb</sub> = 1 V) and high device reliability. All of these should be attributed to the facts that the NO nitridation could form a GeON interlayer with suitable N content and thus provide an excellent GeON/Ge interface with strong Ge-N bonds, while the TaON sandwich layer could separate Hf and Ge, thus effectively preventing the reaction between them and improving the interface quality and electrical properties of the devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.