Abstract

A novel interactive approach called Enhanced Intelligent Scissors (EIS) is presented for segmenting regions of interest in medical images. The proposed interactive medical image segmentation algorithm addresses the issues associated with segmenting medical images and allows for fast, robust, and flexible segmentation without requiring accurate manual tracing. A robust complex wavelet phase-based representation is used as an external local cost to address issues associated with contrast non-uniformities and noise typically found in medical images. The boundary extraction problem is formulated as a Hidden Markov Model (HMM) and the novel approach to the second-order Viterbi algorithm with state pruning is used to find the optimal boundary in a robust and efficient manner based on the extracted external and internal local costs, thus handling much inexact user boundary definitions than existing methods. Experimental results using MR and CT images show that the proposed algorithm achieves accurate segmentation in medical images without the need for accurate boundary definition as per existing Intelligent Scissors methods. Furthermore, usability testing indicate that the proposed algorithm requires significantly less user interaction than Intelligent Scissors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call