Abstract

The industrial Internet of Things (IoT) can monitor production in real-time by collecting the status of parts on the production line with cameras. It is easy to have bright and dark areas in the same image because of the smooth surfaces of mechanical parts and the unstable light source, which affects semantic segmentation’s performance. This paper proposes a joint learning method to eliminate the influence of illumination on semantic segmentation. Semantic image segmentation and image decomposition are jointly trained in the same model, and the reflectance image is used to guide the semantic segmentation task without the illumination component. Moreover, this paper adopts an enhanced convolution kernel to improve the pixel accuracy and BN fusion to enhance the inference speed, optimizing the model to meet real-time detection needs. In the experiments, a dataset of real gear parts was collected from industrial IoT cameras. The experimental results show that the proposed joint learning approach outperforms the state-of-the-art methods in the task of edge mechanical part detection, with about 4% pixel accuracy improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.